THE
IRON MOUNTAINS GEOPARK

Annex no. 2: Geological Heritage including Abstract

HISTORY OF THE EARTH IN TWO DAYS

November 2015
ABSTRACT

Iron Mountains are the key to geological history of central Europe. Proterozoic gneisses and volcanosedimentary complexes (subaerial and submarine volcanism) are present. The earliest life forms have been found – stromatolites.

The Paleozoic comprises Cambrian siltstones, Ordovician quartzites, Silurian shales, Devonian limestones and Carboniferous sediments. Rare fossils include trilobite and graptolite fauna. The third oldest ichnofossil of Zoophycos type in the world has been reported.

The Mesozoic (Upper Cretaceous) sedimentary cover has a unique development, with abundant fauna and flora. Sandstones and spiculitic marlstones provide excellent conditions for groundwater accumulation.

Tertiary rocks are represented by basalt enclosing olivine-rich xenoliths. Geological story of the area is completed by Quaternary loess and sandy gravel. Over a hundred geosites have been described from this area.

The above facts became grounds for listing the Iron Mountains as a National Geopark. It allows a geotourist to explore the history of the Earth in only two days.
GEOLOGICAL HERITAGE

B.1 Geological conditions of the area

Regional geological characteristics of the Iron Mountains National Geopark

The Iron Mountains National Geopark (IMNG) lies around the contact of several regional geological units. The Bohemian Massif is the most extensive relict of the Variscan Orogen in Europe. As such, it often attracts visitors for its varied geological composition. Geological variety of the Iron Mountains over a relatively small area can be presented within one or two days, which makes this area an exceptional phenomenon within the whole of Europe (see the practical sample of the geological excursion “History of the Earth in two days”, freely available also at website http://www.geovedy.cz/cs/files/Geovedy_Brozura_ZS_A5_web.pdf). Scientists and renowned geologists of the past were aware of this fact and studied the Iron Mountains region. Historical line of their activities is shown in Fig. 9.

![Fig. 9. Early times of geology and history of research in the Iron Mountains. Source: IMNG Archive.](image)

General geological characteristics of the IMNG area are based on the regional geological pertinence of its separate parts (Fig. 10). Much like the whole Bohemian Massif, the Iron Mountains represent a component of the Variscan Orogen. Based on current knowledge, the western part of the IMNG area is ranked within...
the Teplá-Barrandian Zone – the so-called Bohemicum. This includes the so-called Iron Mountains Proterozoic and the Iron Mountains (or Chrudim) Paleozoic. Central part of the IMNG area is formed by plutonic rocks of the Iron Mountains plutonic complex (Iron Mountains or Nasavrky pluton) and the Oheb Crystalline Complex. This complex belongs, in terms of the regional geological subdivision, to the Kutná Hora–Svratka region which is, in turn, ranked to the Moldanubicum s. l. The eastern part of the area is formed by rocks of the so-called Hlinsko Zone (Rhenohercynicum) and rocks of the Polička Crystalline Complex (Moldanubicum). The area is also reached by rocks of the Kutná Hora Crystalline Complex (Chotěboř area) and the Svratka Crystalline Complex (area of Otradov and Proseč).

These pre-Variscan and Variscan units are overlain by post-orogenic rocks of the “platform” units. The oldest of these rocks are represented by a relict of the Permo-Carboniferous Jihlava Graben near Kraskov. Cretaceous sediments are of wide areal distribution, located along the western, northern and eastern limits of the IMNG. They concentrate to the „Long Furrow“ area and the Chrudim area. Tertiary rocks are dominated by volcanics at the Košumberk Castle near Luže (Fig. 11).

Quaternary rocks have a wider distribution in the area of Rosice and Chrtníky. They have the character of loess rich in molluscan fauna. Quaternary processes (mostly weathering and erosion) are prominent at a number of sites, taking their share in the geomorphic character of the whole area. As such, they pose a vital aspect of the Geopark geology. Below, you can find the descriptions of the individual regional geological units lying in the Geopark territory.

![Fig. 10. Geological subdivision of the territory of the Iron Mountains National Geopark with designated regional units.](image)
Iron Mountains in different periods of geological history

Proterozoic

Proterozoic is the oldest geological unit represented in the Geopark territory. It is generally constrained by ages 2.5 billion years to 542 million years. The oldest rocks within the Geopark have been dated to less than 700 million years. During their long history in the Iron Mountains, the Proterozoic rocks were subjected to several major pressure and temperature changes. As a result, most rocks of this age have been markedly metamorphosed.

The Proterozoic era in the Iron Mountains is connected with two important phenomena. One of them is volcanic activity, both subaquatic and subaerial. Prominent superficial products like volcanic cones have not been preserved till these days. In spite of this, there are many sites displaying clear evidence – often very peculiar – of volcanic activity.

Another phenomenon is linked with the presence of the Iron Mountains Fault. This major structure is now well visible because it was associated with the uplift of the Iron Mountains by 600 m or more (Fig. 12). This uplift did not take place within a single day, of course: it lasted several million years. The presence of major deep-reaching ruptures allows the ascent of hot fluids. Such process along the Iron Mountains Fault resulted in the origin of ores and other minerals. Large accumulations of minerals represent deposits which can be – in ideal case – exploited. The high number of mineral deposits along the Iron Mountains Fault also gave name to the adjacent mountain range.
Moldanubicum

Moldanubicum is represented by several lower-order units in the territory of the IMNG. The largest area is covered by the Oheb Crystalline Complex in the SW and W parts of the area, a unit ranked to the Kutná Hora–Svratka Region (Moldanubicum s. l.). Lithologically most abundant types are red orthogneisses intercalated with fine-grained biotite paragneisses and amphibolites. Quartzitic paragneisses and serpentinites are also present. Stratigraphic rank of the metasedimentary units and the age of pre-Variscan orthogneisses are unknown.

Rocks pertaining to the Kutná Hora Crystalline Complex are exposed to the south of the Oheb Crystalline Complex, in the E and NE surroundings of Chotěboř. They are represented by reddish orthogneisses, banded migmatites and biotitic greywacke paragneisses. Two-mica migmatites and biotitic migmatites are present in the immediate surroundings of Chotěboř. Rocks in the E part of the Geopark area (around Otradov and Proseč) are ranked to the Svratka Crystalline Complex. They are dominated by porphyroclastic orthogneisses with frequent intercalated bodies of amphibolites, limestones and skarns.

Paleozoic

Paleozoic is the general term for the era constrained by the ages of 542–251 million years. This long stage in the Earth history is subdivided into several periods. Each of the periods is represented – at least to a limited degree – in the Geopark territory. The Paleozoic era is linked with one of the most typical and most famous fossil representatives: a trilobite. This ancient arthropod can be found at several sites in the IMNG. Its finds are sporadic and rare, with only several dozens of individuals collected during the whole history of paleontological research in this area (Fig. 13). Much more abundant fossil finds in the Geopark territory include cephalopods with straight, conical shells (genus Orthoceras or similar), brachiopods (a group similar to bivalves), and crinoids which belong to the group of echinoderms. The Mrákotín area yielded finds of yet another interesting group: graptolites. At a first glance, graptolites resemble shiny lines on dark stone; in fact, these are colonies of tiny organisms ranked among the group of hemichordates.

Paleozoic rocks in the Geopark territory posed an important source of building material, especially in the past. Very hard Ordovician quartzites were used for the construction of buildings. Today, one of the largest and most attractive quarries in the Geopark – the Prachovice Quarry – is opened in the Paleozoic rocks: Silurian and Devonian limestones (for Silurian geology in the IMNG. The importance of this area in the past and present is stressed by the educational trail “Around the Prachovice Quarry”. The trail also provides views of otherwise inaccessible mining area. Occurrences of Late Paleozoic (Permo-Carboniferous) rocks in the IMNG area are rare, being concentrated solely to the area of Kraskov near Seč. Reddish fluvial sandstones to conglomerates locally contain finer-grained tuffitic beds.

These fluvial sediments were reported to yield rare finds of fossilized wood (araucarites). The relict near Kraskov documents the southern end of the so-called Jihlava Graben, which developed on the deep-seated Přibyslav Fault. Besides this relict, isolated occurrences of Permo-Carboniferous rocks of the Jihlava Graben have been also described from the SW surroundings of Hradec Králové.
Mesozoic

In contrast to the Paleozoic record, Mesozoic rocks preserved in the Geopark represent only a relatively short time span (ca. 100–85 million years). In spite of this, the Geopark features sites with unique geology, which are worth our attention.

The period represented by the preserved Mesozoic sediments was marked by the biggest known flooding of land surface in the whole Earth history. This flooding resulted in the origin of a number of shallow, relatively warm seas with flourishing life. Then, most of the Geopark area was lying under the water. Some places, however, were lying near the shoreline. Such places now display effects of ancient sea surf – large, abraded boulders (Fig. 13).

After moving only a few hundred metres basinward, the visitor finds himself in an "open" sea full of sharks, fish, bivalves and cephalopods. Abundant remains of these organisms can be also found in the sedimentary record today (Fig. 14.).

The wide variability in environmental conditions over a small area is also documented by the occurrences of freshwater and swamp environments. Such sites contain fragments of Cretaceous coal together with remains of leaves and stems of plants inhabiting the Cretaceous swamps.
Tertiary

Tertiary rocks are not too abundant in the IMNG area. Notable is the intrusion of olivine basalt at Košumberk Hill near Luže, which is the easternmost product of Neoidic volcanism in Bohemia. Besides olivine nodules, the rock displays typical columnar jointing.

Among other Tertiary rocks, worth mentioning are especially fluvial clayey-silty gravels found in a small relict SW of Trhová Kamenice, ca. 13 m above the present flood plain of the Chrudimka River. Tertiary gravels have been reported also from the Seč area.

Quaternary

Quaternary sediments in the territory of the IMNG are represented by relatively monotonous complexes (loams, eluvial sediments). Accumulations of colluvial sediments have been mapped on the slopes of the Iron Mountains. Relatively instructive outcrops are those in relics of fluvial terrace sediments along the Chrudimka and Novohradka rivers, and the accumulations of loess loams in the Chrudim area. The latter were formerly subjected to exploitation for brick production. Sporadically developed eolian sediments form rather significant accumulations in the areas of Sovolusky, Litošice and Chvaletice.

B.2/B.3 Geosite list and description

At present, more than 100 sites and geosites are described in detail from the territory of the IMNG. Besides their scientific and educational values, they have a potential for the development of “geological stories”. Their positions are shown on a map (Fig. 15).

The selection of the geosites is based on 40-years’ experience of regional geologists († Dr. Vodička, † Dr. Hruška, † Dr. Chlupáč and Dr. Smutek) from Charles University in Prague, Czech Geological Survey in Prague and from the company of Water Resources Chrudim.

Geologically significant sites – geosites, supplemented with general descriptions in Chapter B.2, are listed in a simplified review (Fig. 15.). The list of geosites also includes significant geological sites registered by the Czech Geological Survey (www.geology.cz).

Fig. 15. A map of geosites in the Iron Mountains Geopark.
The table below gives a full list of geosites in the Iron Mountains Geopark, consistent with the database of significant geological sites registered by the Czech Geological Survey in Prague (www.geology.cz).

<table>
<thead>
<tr>
<th>Site name</th>
<th>Identification No.</th>
<th>Site name</th>
<th>Identification No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chvaletice</td>
<td>1</td>
<td>Krámenice</td>
<td>56</td>
</tr>
<tr>
<td>Podhořany</td>
<td>2</td>
<td>Ševcovská skalka near Obora</td>
<td>57</td>
</tr>
<tr>
<td>Běstvina-Javorka</td>
<td>3</td>
<td>Koukalky</td>
<td>58</td>
</tr>
<tr>
<td>Lichoměřice</td>
<td>4</td>
<td>Chotěboř B82</td>
<td>59</td>
</tr>
<tr>
<td>Oheb</td>
<td>5</td>
<td>Libice nad Doubravou – skarn</td>
<td>60</td>
</tr>
<tr>
<td>Skalka u Sovolusk</td>
<td>6</td>
<td>Hradiště – sand pit</td>
<td>61</td>
</tr>
<tr>
<td>Litošice</td>
<td>7</td>
<td>Podolská jeskyně Cave</td>
<td>62</td>
</tr>
<tr>
<td>Lichnice-Kaňkovy hory</td>
<td>8</td>
<td>Páterova jeskyně Cave</td>
<td>63</td>
</tr>
<tr>
<td>Brloh</td>
<td>9</td>
<td>Havlíčské jámy</td>
<td>64</td>
</tr>
<tr>
<td>Lipoštice</td>
<td>10</td>
<td>Zřízov u Seče</td>
<td>65</td>
</tr>
<tr>
<td>Chrtínky</td>
<td>11</td>
<td>Semtěš-Vlčí skála</td>
<td>66</td>
</tr>
<tr>
<td>Žumberk</td>
<td>12</td>
<td>Semtěš – lime kiln</td>
<td>67</td>
</tr>
<tr>
<td>Deblav</td>
<td>13</td>
<td>Bošov</td>
<td>68</td>
</tr>
<tr>
<td>Rabštejn</td>
<td>14</td>
<td>Hlinka</td>
<td>69</td>
</tr>
<tr>
<td>Raškovice</td>
<td>15</td>
<td>Mezihoří</td>
<td>70</td>
</tr>
<tr>
<td>Na Skalách</td>
<td>16</td>
<td>Obří postele</td>
<td>71</td>
</tr>
<tr>
<td>Prachovice</td>
<td>17</td>
<td>Morašice – quarry</td>
<td>72</td>
</tr>
<tr>
<td>Vápenný Podol</td>
<td>18</td>
<td>Morašice – waste dump</td>
<td>73</td>
</tr>
<tr>
<td>Mrákotín u Skutě</td>
<td>19</td>
<td>Hudeč</td>
<td>74</td>
</tr>
<tr>
<td>Ctětín</td>
<td>20</td>
<td>Obora – calc-silicate rocks</td>
<td>75</td>
</tr>
<tr>
<td>Prosetín</td>
<td>21</td>
<td>Studená Voda – quarry</td>
<td>76</td>
</tr>
<tr>
<td>Snín</td>
<td>22</td>
<td>Kamenné stádo</td>
<td>77</td>
</tr>
<tr>
<td>Lukavice</td>
<td>23</td>
<td>Libkov – quarry</td>
<td>78</td>
</tr>
<tr>
<td>Nasavrky</td>
<td>24</td>
<td>Polánka – limestone</td>
<td>79</td>
</tr>
<tr>
<td>Kraskov</td>
<td>25</td>
<td>Malhoří</td>
<td>80</td>
</tr>
<tr>
<td>Skrovád</td>
<td>26</td>
<td>Jeskyně u tyrolského domku Cave</td>
<td>81</td>
</tr>
<tr>
<td>Bítovany-Farář</td>
<td>27</td>
<td>Podhůra – quarry</td>
<td>82</td>
</tr>
<tr>
<td>Skutíčko</td>
<td>28</td>
<td>Novohradka River valley downstream of Košumberk</td>
<td>83</td>
</tr>
<tr>
<td>Vrbatův Kostelec-Farář</td>
<td>29</td>
<td>Geofond area</td>
<td>84</td>
</tr>
<tr>
<td>Příbylov</td>
<td>30</td>
<td>Humperky</td>
<td>85</td>
</tr>
<tr>
<td>Štěpánov u Skutě</td>
<td>31</td>
<td>Horní Sokolovec – sand pit</td>
<td>86</td>
</tr>
<tr>
<td>Luž-Košumberk</td>
<td>32</td>
<td>Jenišovice</td>
<td>87</td>
</tr>
<tr>
<td>Podlažice</td>
<td>33</td>
<td>Střemošická stráň</td>
<td>88</td>
</tr>
<tr>
<td>Vestec</td>
<td>34</td>
<td>Svihůvek</td>
<td>89</td>
</tr>
<tr>
<td>Horní Studenec</td>
<td>35</td>
<td>Ležáky</td>
<td>90</td>
</tr>
<tr>
<td>Blatnice</td>
<td>36</td>
<td>Proseč – quarry</td>
<td>91</td>
</tr>
<tr>
<td>Kladruby u Libice</td>
<td>37</td>
<td>Kapalice</td>
<td>92</td>
</tr>
<tr>
<td>Sloupno – quarry</td>
<td>38</td>
<td>Bílý Kůň – spring</td>
<td>93</td>
</tr>
<tr>
<td>Doubrava River valley</td>
<td>39</td>
<td>Křižanovice</td>
<td>94</td>
</tr>
<tr>
<td>Leštinka area quarries</td>
<td>41</td>
<td>Kostelec u Hřmanova Městce – quarry</td>
<td>95</td>
</tr>
<tr>
<td>Rychnburk – Šlínk Mine</td>
<td>42</td>
<td>Skalky u Lhotky</td>
<td>96</td>
</tr>
<tr>
<td>Doly near Lužě</td>
<td>43</td>
<td>Březinka</td>
<td>97</td>
</tr>
<tr>
<td>Mašťale</td>
<td>44</td>
<td>Senín</td>
<td>98</td>
</tr>
<tr>
<td>Pivnice</td>
<td>44</td>
<td>Horní Studenec – quarry</td>
<td>99</td>
</tr>
<tr>
<td>Nákle</td>
<td>46</td>
<td>Bezlejov</td>
<td>104</td>
</tr>
<tr>
<td>Roudná</td>
<td>47</td>
<td>Studená Voda – field</td>
<td>105</td>
</tr>
</tbody>
</table>
Selected geosites:

- **(01) Chvaletice**: an abandoned quarry, where Fe-Mn mineralization was exploited in rocks of the Iron Mountains Proterozoic (Chvaletice Group). The quarry is now used as a repository of communal waste and ash from the near Chvaletice power plant. It is an instructive example of a possible use of old quarry workings in compliance to environmental knowledge (problems of mine waters and subsequent pollution; possible collection of secondary minerals on adjacent spoil tips; a transgression of Cretaceous sediments over Proterozoic rocks is visible to the north of the quarry edge).

- **(02) Podhořany**: an abandoned, freely accessible quarry, where Proterozoic garnet-bearing gneisses were exploited. These are the oldest rocks in the Geopark territory and can be collected with no restrictions.

- **(03) Běstvina – Javorka community**: a former fluorite and barite mine; an example of post-mining reclamation. The site displays negative impacts of wet conservation of the mine on groundwater quality, necessitating remediation measures (Fig. 16).

- **(04) Líceměřice**: One of the sites where uranium mineralization was exploited in the Iron Mountains. An instructive example of a mining area reclamation and mine-water remediation.

- **(05) Oheb**: A rocky spur with the ruins of the Oheb Castle functions as one of the “abutments” of the dam of the Seč Reservoir. It is formed by the Oheb orthogneiss as a representative of the regional geological unit of the Oheb Crystalline Complex. The whole site is an exemplary case of the role of geological structure and fluvial erosion in relief shaping and their significance in dam construction.

- **(06) Skalka u Sovolusk**: an example of Proterozoic volcanic activity with a preserved outcrop of pillow lavas. A nearby site displays banded schists and stromatolitic buildups.

- **(07) Litošice**: outcrops of Proterozoic volcanics and Litošice conglomerates. Phosphate and sulphide minerals can be found on local spoil tips; they are of European significance and can be collected with no restrictions.

- **(08) Lichnice-Kaňkovy**: forested western crest of the Iron Mountains around the Lichnice Castle. The area is formed by gneisses of the Oheb Crystalline Complex, and by rocks of the Podhořany Crystalline Complex in the NW. It features extensive rocky outcrops, talus fields and gorges (Lovětínská and Hedvikovská gorges). A ruin of the Lichnice Castle is located in the northern part of the area.

- **(09) Brloh**: A quarry, now abandoned, and a series of rocky outcrops along a stream. At this sites, Cambrian rocks pass into Ordovician rocks, whose age is documented by the presence of fossils. The quarry displays a transgression of Cretaceous littoral gravel facies over Ordovician quartzites with ichnofossils. Free collection of samples is permitted. (Fig. 13).

- **(11) Chrtníky**: an active quarry in Ordovician diabases (basaltic rocks) displaying transgression of Cretaceous sediments over these Paleozoic rocks. Cretaceous sediments are deposited
in narrow depressions and have the character of surf sediments. Abundant fossil finds. Loess with molluscan fauna is exposed in the eastern part of the quarry.

- **(12) Žumberk:** an active quarry with an example of extraction of abyssal magmatites (Žumberk granite, porphyroids of the Lukavice Series). Significant pyrite mineralization.

- **(13) Deblòv:** an outcrop of bedding planes of Ordovician quartzites with examples of ichnofossils. The area has the size of a few hundred square metres. It is a type locality of European significance to show and describe paleoichnological methods.

- **(14) Rabštejn:** a transition from compact quartzite cliffs to boulder fields displaying the features of frost weathering. The near outcrops show extremely large individuals of the ichnogenus *Skolithos*.

- **(15) Raškovicè:** a number of quartzite quarries at Horní Raškovice and in the surrounding forests. The extracted material was used, among others, for the production of millstones. The site is now accessible through an educational trail and contains the Barborka lookout tower providing a good view of the Bohemian Cretaceous Basin (the region around Pardubice, Kolín, Hradec Králové). The village of Horní Raškovice is a typical example of an old stonemason community.

- **(16) Na Skalách:** a geological protected site (nature monument) with a system of abandoned quarries after sandstone extraction. A transgressive boundary between the marine Cretaceous sediments and the underlying Ordovician quartzites of the Iron Mountains Paleozoic has been exposed at several places for demonstrative purposes. The site also features thick accumulations of boulder conglomerates evidencing high-energy surf action (Fig. 17).

- **(17) Prachovice:** an extensive quarry, partly still in operation (owner: CEMEX Cement, k. s.). Silurian and Devonian limestones are being exploited, containing fossil organisms and numerous minerals. Stratotype of Prachovice Formation has been defined in the eastern part. The upper levels of the quarry show frequent pseudokarst features including the occurrence of soils of Terra Rossa type. A display of mining and reclamation methods (Fig. 23).

- **(18) Vápený Podol:** The accessible cliff near the church is the last relict after limestone mining in this village. Not far from the cliff, an old lime kiln has been proclaimed a technical monument. Relicts after the former service railway (cuts, bridges, embankments) which served stonemason purposes can be observed in the village and its vicinity.

- **(19) Mráktíni u Skutče:** a site located in the Hlinsko Zone (Paleozoic – Mráktín Formation). It is renowned for the presence of rich graptolite fauna with the possibility of unrestricted sample collection on the fields and in the forests.

- **(20) Ctětín:** an active granodiorite quarry near the village with instructive examples of spherical weathering of granites. The quarry includes a space for the processing of extracted material: its working into paving stones, kerbs and other products. The site thus poses a display of pit mining and subsequent processing.

- **(21) Prosetín:** a typical stonemason village, surrounded by several active and abandoned granodiorite quarries. Numerous stonemasonry products can be viewed in their making. The site also displays many examples of weathering of Be-mineralized granites.

- **(22) Srní:** the active Matula Quarry and the neighbouring abandoned quarry were opened as a granodiorite deposit. Granodiorite is being extracted
by typical pit mining with the use of a cableway. The area offers displays of granodiorite processing into stonemasonry products. The site is incorporated in the MAGMA educational bicycle trail.

- **(23) Lukavice:** The village was affected by underground mining of pyrite for the production of sulphuric acid. An old school and an extensive spoil tip are located in the village centre. A good example of adverse effects of mining on the environment. The site is incorporated in the MAGMA educational bicycle trail.

- **(25) Kraskov:** an area with the so-called Kraskov relict of Permian rocks. The rocks are represented by conglomerate containing rare finds of fossilized wood. Mining pits after gold mining have been preserved in the valley of the Zlatý potok Stream.

- **(26) Škrovád:** exposures of Cretaceous sediments in a series of quarries. Quartzose, kaolinite-containing and glauconitic sandstones are of Cenomanian age.

- **(27) Bítovany-Farář:** an exposure in the right bank of a stream. A significant geological site of clayey and quartzose sandstones evidencing the phenomenon of Cretaceous transgression. Beds of conglomerate and claystone with coal seamlets are locally visible. The Cretaceous sediments are underlain by strongly weathered granite of the Žumberk type.

- **(28) Skutíčko:** a village with documented past exploitation of Cretaceous coal with finds of fossil plants and amber.

- **(29) Skála:** The site is contained in this list for its high outcrop series in the valley of the Žejbro Stream. The outcrops are formed by Cretaceous spiculitic marlstones with abundant fossils.

- **(29) Vrbatův Kostelec-Podskála:** Several geological phenomena are displayed in the valley of the Žejbro Stream. Outcrops of basic abyssal magmatites banded with acidic magmatites lie closer to Vrbatův Kostelec. The stream channel contains varied pebble material mixing rocks from the marginal part of the Nasavrky pluton. North of Vrbatův Kostelec, laterites are visible in outcrops, passing across rooted paleosols into Cenomanian fossiliferous calcareous sandstones and beach sands. The Podskála site features a large outcrop series of calcareous siltstone. Siltstones are underlain by glauconitic sandstones with rich fauna and flora, and storm sediments. The community of Podskála (originally a spa) was renowned for its spring issues, which can be still observed today. Calcareous tufa accumulations, locally containing imprints of fossil flora, are developed in the neighbourhood.

- **(30) Přibylov:** a partly active quarry exploiting Lower Turonian spiculitic marlstones (“opukas”) of the Bílá hora Formation. It is one of the last quarries in Bohemia where high-quality opukas for the purposes of historical-monument restoration can be extracted. Rare specimens of fossil fauna and flora can be collected. Problems of opuka exploitation in combination with the preservation of groundwater resources can be demonstrated in the nearby Škuteč-Sv. Anna withdrawal area.

- **(32) Luže-Košumberk:** the Košumberk Castle, partly ruined, lying on the southernmost relict of Tertiary volcanic products in the Czech Republic. Columnar jointing of basalt and the associated pyroclastics can be observed. Important groundwater withdrawal areas are located in the Novohradka River valley. The alluvial plain of the river also demonstrates the geological and tectonic controls on modelling of the river channel.
• **Podlažice:** a significant hydrogeological site in the scale of the Czech Republic – a withdrawal area supplying the population of 80,000.

• **Horní Studenec:** a significant hydrogeological site with unique examples of utilization of groundwater issues (adits, galleries) (Fig. 18).

• **Blatnice:** a significant hydrogeological site with historical consequences.

• **Kladruby u Libice:** a significant hydrogeological site with an example of a ponor stream.

• **Sloupný – quarry:** An active quarry near the village of Štikov, exploiting rocks of the Iron Mountains pluton – metadiorites and metagranitoids, amphibolites, metababbros.

• **Doubra River valley:** a canyon-like valley of the Doubra River with multiple rocky outcrops. It provides a perfectly exposed section, showing structural elements and mutual relations among rocks. The numerous geomorphic elements displayed include many examples of frost weathering and effects of fluvial erosion on Moldanubian migmatites and orthogneisses.

• **Leštinka area quarries:** abandoned but accessible granodiorite quarries, now mostly flooded. The whole area features numerous artefacts after quarrying activities (relics of buildings, railway siding, mining technologies and others).

• **Rychmburk – the Šilink Mine:** active quarries and a rocky outcrop series along the Krounka River. Mining of the Rychmburk greywackes of the Hlinsko Zone. The Rychmburk Castle lies atop a rocky spur in the village of Předhradí.

• **Doly near Luže:** analogous with the site of Skutíčko. The valley of the Krounka River exposes a large outcrop of Cretaceous coal containing fossil plants and gypsum. The whole exposed section features the basement (Rychmburk greywackes) and a great facies variability of Cenomanian sediments.

• **Maštale:** sandstone rock formations and canyon-like valleys (Cenomanian) proclaimed as a geological nature reserve. The basement rock is mostly the so-called Zderaz granite. Cretaceous sediments form various geomorphic elements due to erosion. The boundary between the Cenomanian and Turonian is exposed near Zderaz.

• **Pivnice:** a canyon-like valley of the Pivnický potok Stream between Zderaz and Dolany incised in Cretaceous sediments (Cenomanian). Numerous geomorphic elements and pseudokarst features were formed due to erosion: gorges, slot canyons, potholes, rock shelters, niches etc.

• **Nové Hrady:** a significant hydrogeological site is located in the valley of the Hradecký potok Stream – the Nadymač spring.

• **Nákle:** exposed volcanic diabase body. Depressions on the pre-Cretaceous surface are filled with Upper Cretaceous sediments with very rich fossil fauna. The site is protected as a nature monument, and is incorporated in the geological educational trail “Heřmanův Městec – the town of two seas.”

• **Roudná:** a type section of the transgression of Cretaceous sediments over rocks of the Polička Crystalline Complex.

• **Quarry near Nasavrky:** an abandoned but accessible quarry with a steep face. Various lithotypes within the Iron Mountains plutonic complex can be observed, and samples can be taken at no restrictions. The site is incorporated in the MAGMA educational bicycle trail.

• **Hrobka:** an outcrop in Cretaceous sediments, now covered with
Vegetation. It is important mostly for its entomological and botanical values.

- **(50) Strádovské peklo**: a deeply incised valley of the Chrudimka River with numerous rock outcrops. It exemplifies various rocks of the Iron Mountains pluton.
- **(51) Krkanka**: see Strádovské peklo.
- **(52) Mrákotín near Skuteč**: a complex of abandoned and flooded granodiorite quarries with examples of spherical weathering of granite.
- **(53) Otradoř**: old quarries, boulders and blocks of rocks of the Polička Crystalline Complex. Examples of spherical weathering of granodiorite.
- **(54) Horní Lhotka**: a vegetated abandoned quarry featuring a contact of amphibolite with the ambient migmatite. Both rock types are ranked within the Oheb Crystalline Complex.
- **(55) Nehodovka**: a disintegrated outcrop on an elevation in the middle of a field, utilized as a source of building stone, and a small quarry. These represent exposures of a serpentinized ultrabasic rock, forming a body in paragneisses of the Oheb Crystalline Complex. Abundant finds of secondary minerals.
- **(56) Křemenice**: a land-filled pit quarry, in which a quartz vein was exploited as material for glass production. Fragments of quartz veins now found in the vicinity come from the neighbourhood of serpentinite bodies. Documented finds of amethyst. The body is enclosed in rocks of the Oheb Crystalline Complex.
- **(57) Ševcova skalka near Obora**: a notable outcrop of orthogneiss, showing numerous examples of frost weathering.
- **(58) Koukalky**: cliffs in the rocks of the Kutná Hora Crystalline Complex, represented by orthogneisses and migmatites.
- **(59) Chotěboř B82**: a complex of abandoned quarries exploiting orthogneiss and metabasalt. A body of metatrahyandesite is present.
- **(60) Libice nad Doubravou – skarn**: An outcrop of a skarn body on the river bank in rocks of the Kutná Hora Crystalline Complex.
- **(61) Hradiště – a sand pit**: a sand pit in limited operation, exploiting sandstones of Cenomanian age.
- **(62) Podolská jeskyně Cave**: a limestone cave and an important wintering refuge of bats (cave code JESO-K123 40 10 J00002).
- **(63) Páterova jeskyně Cave**: a limestone cave and an important wintering refuge of bats (cave code JESO-K123 40 10 J00001).

Fig. 16 – Minerals of the Iron Mountains. Quartz (16a) and fluorite (16b from Běstvina and calcite (16c) from Prachovice.
B.4 Other tourist attractions in the Iron Mountains Geopark

- **Castles, chateaus, ruins**
In the Geopark there are a number of historically significant objects - castles, chateaus and ruins. The castle ruins Lichnice (Fig. 27.) and also a large castle ruins Košumberk near Luž are important monuments and landmarks of the Iron Mountains. Other significant castle ruins in the Geopark include for example Oheb over Seč dam, Rabštejn, Strádov or Žumberk – they are freely accessible. In the Geopark there is a total of six chateaus (Nasavrky, Choltice, Nové Hrady, Slatiňany, Chrast, Chotěboř).

- **Observation towers**
Also places of distant views and a lookout towers are tourist destinations. There is a beautiful view from the castle ruins Lichnice and Oheb, from the tower in Slatiňany chateau and also the magic of Střemošice hillsides is quite unique. The lookout towers include some year-round open such as Jahůdka at Luž, the lookout tower Na Kopečku at Líceměřice and Bára in Podhůra recreational forests (Fig. 20.) as well as Boika at Nasavrky. The lookout tower at Zuberský hill near Trhová Kamenice and Vojtěchovská lookout tower can only be visited during the tourist season. Viewpoint and observation towers that are freely accessible can be viewed as goals of activities aimed to promote the off-season tourism.
• **Heřmanův Městec** – the skylight of Heřmanův Městec is dominated by the baroque church of the St. Bartholomew in the Náměstí Míru as well as the chateau with the adjacent park, which belongs to the NATURA 2000 sites. Also the Jewish part of the town with a synagogue and Jewish cemetery is important.

• **Veselý Kopec and Hlinsko Christmas Crib** - a set of folk architecture and architectural reserve, museum in nature, recently they placed within the top 5 visited sights in the Pardubice region, carnival masks and beats at Bethlehem are registered on the UNESCO list.

• **Chrudim Architectural Reserve** - a valuable history of the town with a number of important monuments and museums - Museum of Baroque statues, Regional Museum with an exhibition of Alfons Mucha and Puppet Museum (museum unique in Europe Museum) (Fig. 21.).

• **Pious place Ležáky** - The village of Ležáky was burned by the Nazis in response to the assassination of Reinhard Heydrich. Originally it was a stonecutter village (there are numerous quarries in the area). After the World War II monuments have been erected on the site of the burned buildings. It is an important pious area (Fig. 22).

• **Podlažice Monastery**
 The Benedictine monastery from the 12th century, is renowned for archaeological finds and finding of the so called Devil’s Bible (Codex Gigas). The exhibition of findings of this monastery is located in a nearby chateau in Chrast near Chrudim.

• **Selected cultural, social and sports events:**
 In the Geopark territory many cultural, social and sporting events, both of regional and nationwide character are organized. Below see the list of the most significant events of this type. Apart from them, numerous concerts, fairs, sports tournaments and other activities focused mainly on the inhabitants of the region are organized there:
• Nasavrky Grand Prix - Nasavrky and surroundings - April,
• Chrudimská rally - Chrudim and surroundings - April,
• Tomáškova and Novákova musical Skuteč - Skuteč - May,
• International dance festival - Skuteč - May,
• Brass band festival - Chrudim - June,
• Puppeteer Chrudim - Chrudim - July,
• MTB Marathon Manitou the Iron Mountains - Chrudim and surroundings - July,
• Lughnasad - Nasavrky - July,
• „Košumberk Summer festival" - Luže - July-August,
• Salvator pilgrimage - Chrudim - August,
• Hlinsko folk sausage - Hlinsko - August,
• Bartholomew Fair - Heřmanův Městec - August,
• Slatiňany Grand Prix - Slatiňany and surroundings - August,
• Memorial of Michael Denk - Hlinsko - September
• The Chrudim puppet - Chrudim - October.